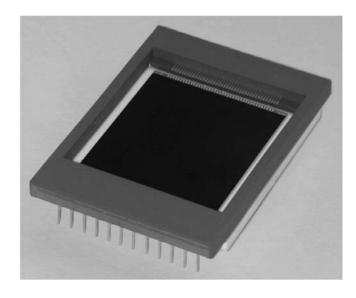
e2V

CCD42-40 Front Illuminated AIMO Ceramic Compact Pack Large Area Sensor for Scientific Applications

e2v technologies

FEATURES

- 2048 x 2048 x 13.5 μm pixels
- Advanced Inverted Mode Operation (AIMO)
- Low Noise Output Amplifier
- Dual Responsivity Output
- Full-frame Architecture
- Gated Dump Drain on Output Register
- Compact Footprint Ceramic Package


INTRODUCTION

This version of the CCD42 family of CCD Sensors has full-frame architecture, which in combination with an extremely low noise amplifier, makes the device well suited for use in general scientific imaging. The advanced inverted mode operation (AIMO) gives a 100 times reduction in dark current with minimal full well reduction and is suitable for use at Peltier temperatures.

The output amplifier is designed to give excellent noise levels at low pixel rates and can match the noise performance of most conventional science CCDs at pixel rates as high as 3 MHz.

There are two low noise amplifiers in the readout register, one at each end. Charge can be made to transfer through either or both amplifiers by making the appropriate $R\varnothing$ connections. The readout register has a gate controlled dump drain to allow fast dumping of unwanted data.

The register is designed to accommodate four image pixels of charge and a summing well is provided, capable of holding six image pixels of charge. The output amplifier has a feature (switchable OG2) to enable the responsivity to be reduced, allowing the reading of such large charge packets.

GENERAL DATA

Format

Image area Active pixels:												27.6 x 27.6 mm
												2048
												2048 + 4
serial overse	car	ηр	ixel	ls								50 at each end
Pixel size .												13.5 x 13.5 μm
Number of ou	ıtpı	ut	am	plif	iers	6						2
The device ha	as a	a 10	00%	% f	ill fa	act	or	for	ma	axin	nur	n sensitivity.
Spectral range	е											. 420 - 1060 nm

PERFORMANCE LIMITS

	Min	Typical	Max	
Peak charge storage (see note 1)	80k	100k	-	e ⁻ /pixel
Peak output voltage (unbinned)	-	450	-	mV
Dark signal at 293 K (see note 2)	-	100	200	e ⁻ /pixel/s
Charge transfer efficiency (see note 3): parallel serial	99.999 99.999	99.9999 99.9993	-	% %
Output amplifier responsivity: normal mode high signal mode	3.0	4.5 1.5	6.0	μV/e ⁻ μV/e-
Readout noise at 253 K (see note 4)	-	3.0	4.0	rms e ⁻
Readout frequency (see note 5)	-	20	3000	kHz
Line transfer period	20	40	-	μs
Output node capacity (see note 6)	-	1,000,000	-	e ⁻

NOTES

- 1. Signal level at which resolution begins to degrade.
- 2. The typical average (background) dark signal at any temperature T (kelvin) between 230 K and 300 K is given by:

$$Q_d/Q_{do} = 1.4 \times 10^6 T^3 e^{-9080/T}$$

where Q_{do} is the dark current at 293 K. Below 230 K additional dark current components with a weaker temperature dependence may become significant.

- 3. CTE is measured for a complete 3-phase clock triplet.
- 4. Measured using correlated double sampling. Noise specification applies at 20 kHz.
- 5. Readout above 3000 kHz can be achieved but performance to the parameters given cannot be guaranteed.
- 6. With output circuit configured in low responsivity/high capacity mode (OG2 high).

TYPICAL OPERATING CONDITIONS

Ref	Pin No.	Typical Voltage
SS	1, 12, 13, 24	9.5 V
IØ1	17	12 V
IØ2	18	12 V
IØ3	16	12 V
RØ1(L)	20	11 V
RØ2(L)	19	11 V
RØ1(R)	22	11 V
RØ2(R)	23	11 V
RØ3	21	11 V
ØR	14	12 V
ØSW	15	11 V
DG (see note 9)	7	0 V
OG1	2	3 V
DD	6	24 V
OG2	11	see note 7
OD(L)	4	29 V
OD(R)	9	29 V
OS(L)	3	see note 8
OS(R)	10	see note 8
RD(L)	5	17 V
RD(R)	8	17 V

Nomenclature

									Substrate e (connect to SS)
									mage area clocks
									rial register clocks
ØR									. Reset clock
ØS۱	Ν								Summing well
DG								Re	egister dump gate
OG1	, O	G2							. Output gates
									. Dump drain
OD									. Output drain
OS									Output source
RD									. Reset drain

NOTES

- 7. OG2 = OG1 + 1 V normal low noise mode or OG2 = 20 V- low responsivity/increased charge handling mode.
- 8. OS = 3 to 5 V below OD typically. Use 3 5 mA current source or 5 - 10 kW load.
- 9. Non-charge dumping level is shown. For charge dumping, DG should be pulsed to 12 \pm 2 V.
- 10. Readout register clock pulse low levels +1 V; other clock low levels $0 \pm 0.5 \text{ V}$.
- 11. With the RØ connections shown, this device will operate through both outputs. In order to operate from the lefthand output only, $R\emptyset1(R)$ and $R\emptyset2(R)$ should be reversed.

BLEMISH SPECIFICATION

Traps	Pixels where charg	e is temporarily held.
	Traps are counted i	f they have a capacity
	greater than 200 e	at 253 K.

Black spots Are counted when they have a signal level

of less than 90% of the local mean at a signal level of approximately half full-well. White spots

Are counted when they have a generation rate 125 times the specified maximum dark signal generation rate (measured between 253 and 293 K). The typical temperature dependence of white spot defects is:

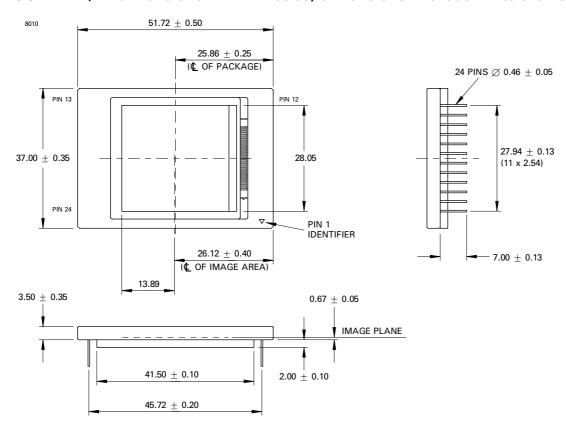
$$Q_d/Q_{d0} = 122T^3e^{-6400/T}$$

Column defects A column that contains at least 21 white or

21 black defects.

GRADE	0	1	2
Column defects	0	1	4
Black spots	50	75	100
Traps > 200 e ⁻	10	20	30
White spots	50	75	100

Grade 5


Functional devices for set-up purposes only.

Part Reference

CCD42-40-*-388 * = grade, AIMO, frontside, ceramic compact package.

Other variants of the CCD42-40 available are back illuminated format and non-inverted mode operation (NIMO). In common with all e2v technologies CCD Sensors, the front illuminated CCD42-40 is available with a fibre-optic window or taper, or with a phosphor coating. Sensors are normally supplied with a temporary glass window. The CCD42-40 is also available in a PGA metal pack or on a metal 3-side buttable package.

OUTLINE (All dimensions in millimetres; dimensions without limits are nominal)

Whilst e2v technologies has taken care to ensure the accuracy of the information contained herein it accepts no responsibility for the consequences of any use thereof and also reserves the right to change the specification of goods without notice. e2v technologies accepts no liability beyond that set out in its standard conditions of sale in respect of infringement of third party patents arising from the use of tubes or other devices in accordance with information contained herein.